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Abstract

An annular reactor packed with matrices in which the catalysts/enzyme/microorganisms are immobilized, has been simulated and the
results indicate that the overall resistance and hence the conversion depend upon the Thiele modulus and another parameter,α. This
parameter characterizes the ratios of the diffusion times and the ratios of length scales of the bulk liquid phase and the solid phase in the
reactor shell. Analytical solutions can be obtained for linear reactions and a simplified semi-analytic method has been used for obtaining
concentration profiles for nonlinear reactions. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Great interest has recently been shown in the develop-
ment of newer types of reactor configurations with a view
to optimizing the yield of desired products and reducing
the overall costs. Membrane based reactors [1–22] have
shown enormous potential in fulfilling this requirement.
This is mainly because these reactors integrate the desirable
properties of both synthetic membranes and catalysts. A
large variety of catalytic reactions and bio reactions, viz.
enzymatic reactions, microbial fermentations and plant and
animal cell culture are routinely being conducted in annular
reactors. Tsotsis et al. [9] presented a mathematical study
of ethane dehydrogenation and methane steam reforming
reactions. Their general steady state mathematical model
considered temperature and concentration gradients in the
tube side, membrane and shell side of the reactor. Gallaher
et al. [10] experimentally evaluated industrially important
dehydrogenation reactions in catalytic membrane reactors.
Koska et al. [13] developed a mathematical model of pro-
tein transport in packed bed ultra filtration hollow fiber
bioreactors. Their model treated hydrodynamic equations
as quasi-steady state while transient solute mass balance
governed the redistribution in extra capillary space (ECS).
Pena et al. [16] studied the performance of ethylene epox-
idation in catalytic packed bed membrane reactors with
two different configurations. Their study was oriented to-
wards increasing the ethylene oxide selectivity and they
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found out that the membrane reactors offer a high level
of operational flexibility. Recently, Langhendries et al.
[19] studied the liquid phase hydrocarbon oxidation in a
packed bed membrane reactor. They developed a math-
ematical model and interpreted the reactor performance
using conversion, peroxide efficiency and oxidation prod-
uct separation factor. Their membrane reactor configuration
gave a substantially higher peroxide efficiency as com-
pared to the conventional packed bed configuration. In the
present communication we have used a much-simplified
approach (in contrast to the more rigorous approaches of
some of the above-mentioned previous work) to simu-
late the performance of a membrane reactor arrangement
as shown schematically in Fig. 1. The reactant entering
from the tube side diffuses through the membrane to en-
ter the shell side. The shell is packed with matrices in
the pores of which catalysts/enzymes/cells are immobi-
lized. The reactant entering the shell diffuses into the
pores of the matrices (which will henceforth be denoted
as the solid phase) and reacts in presence of the cata-
lysts/enzymes/cell therein. The reactant also diffuses radi-
ally through the bulk liquid medium (this will henceforth
be denoted as the bulk phase) in the reactor shell. Such
an arrangement can prove useful for conducting chemical
and biochemical reactions. In these reactors we can (1)
maintain a very high throughput; (2) control flow rates
of different reactants by suitable selection of membrane
component. This can be achieved by using membranes,
which selectively pass species based on size, shape or in-
teraction with them [23]; and (3) integrate separation with
reaction.
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Nomenclature

a central tube radius
A1N eigen constants given by Eq. (42)
b distance from tube center to screen

outer wall
B1n eigen constant defined by Eq. (64)
c concentration of the reactant
c0 concentration at tube inlet
C dimensionless concentration of

the reactant
Cw tube wall concentration
C̄(m) tube side mixing cup concentration
d distance from the tube center to

the annulus wall
D diffusion coefficient of the reactant
F1 function given by Eq. (51)
F2 function given by Eq. (45)
H parameter defined by Eq. (26)
I0 modified Bessel function of the first

kind, zero order
I1 modified Bessel function of the first

kind, first order
k1 partition function atr = a

k2 partition function atr = b

K0 modified Bessel function of the
second kind, zero order

K1 modified Bessel function of the
second kind, first order

Km Michaelis–Menten constant
K̄m dimensionless M–M constant
M(a, b, c) Kummer function
Pe Peclet number defined by Eq. (20)
r radial coordinate
V maximum reaction rate in the M–M

kinetic rate expression
V0 centerline laminar flow velocity

for tube side
X dimensionless radial coordinate

defined by Eqs. (16a) and (16b)
y matrix length variable
ys radius of the spherical matrix
Y dimensionless matrix length variable
Yn eigenfunctions
z axial distance variable
Z dimensionless axial distance variable

Greek symbols
α parameter defined by Eq. (24)
β d/b parameter defined by Eq. (25)
ε bed porosity
η parameter defined by Eq. (58)
κ k2/k1
Λ1N eigenvalues

σ overall mass transfer resistance
defined by Eqs. (47)–(49)

Φ Thiele modulus defined by Eq. (23)
Φm Thiele modulus defined by Eq. (42)
χ parameter defined by Eq. (21)

Subscripts
1,2,3 tube side, membrane and annulus,

respectively
b bulk liquid phase in the shell
s solid phase in the shell

2. Theoretical development

The following assumptions have been made in formulat-
ing the design equations:

1. The reactor is assumed to be of tubular geometry and
steady state prevails in the reactor.

2. The reactant movement through the tube side is by lam-
inar convection in the axial direction and by diffusion in
the radial direction.

Fig. 1. Schematic of a membrane fixed bed reactor.
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3. There is no convection in the membrane or shell.
4. The reactor is assumed to be isothermal and the temper-

ature gradients are neglected.
5. The radial diffusion coefficients in the tube side, mem-

brane bulk phase in the shell and through the pores of the
matrices are constants and are independent of concentra-
tion.

6. The matrices are assumed to be of spherical shape with
a uniform radius throughout the bed.

7. As a representative example, reaction rate is assumed to
follow Michaelis–Menten kinetics.

With these assumptions the balance equations for the dif-
ferent regions can be written as follows.

Tube side:

1

r

∂

∂r

(
rD1

∂c1

∂r

)
= V0

(
1 − r2

a2

)
∂c1

∂z
(1)

Membrane:
1

r

∂

∂r

(
rD2

∂c2

∂r

)
= 0 (2)

Shell side bulk phase:

1

r

∂

∂r

(
rD3b

∂c3b

∂r

)
= 3(1 − ε)

ys
D3s

(
∂c3s

∂y

)
y=ys

(3)

Shell side solid phase:

1

y2

∂

∂y

(
y2D3s

∂c3s

∂y

)
= Vmaxc3s

Km + c3s
(4)

The appropriate boundary conditions are

c1(0,0) = c0 (5)(
∂c1

∂r

)
r=0

= 0 (6)

D1

(
∂c1

∂r

)
= D2

(
∂c2

∂r

)
at r = a (7)

c2

c1
= k1 (8)

D2

(
∂c2

∂r

)
= D3b

(
∂c3b

∂r

)
at r = b (9)

(
∂c3b

∂r

)
= 0 at r = d (10)

c2

c3b
= k2 (11)

c3b = c3s at y = ys (12)(
∂c3s

∂y

)
y=0

= 0 (13)

The membrane equation (Eq. (2)) can be eliminated by in-
tegrating it and applying b.c.’s (7) and (9) to get

D1

(
∂c1

∂r

)
r=a

= D2k1

a ln(b/a)
(κc3 − c1) at r = a (14)

D1

(
∂c1

∂r

)
r=a

= bD3b

aD1

(
∂c3

∂r

)
r=b

(15)

Defining,

Ci = ci

c0
, i = 1,2,3 (16a)

C3s = c3s

c0
(16b)

X = r

a
shell side (17)

X = r

b
tube side (18)

Y = y

ys
(19)

Pe = aV0

D1
(20)

K = k2

k1
(21)

Z = z

a Pe
(22)

Eqs. (1), (3) and (4) can be made dimensionless as follows.
Tube side:

Φ2 = y2
sVmax

D3sKm
(23)

α = 3(1 − ε)
D3sb

2

D3by2
s

(24)

γ = D3bb

D1a
(25)

H = K1D2

D1a ln(a/b)
(26)

β = d

b
(27)

K̄m = Km

c0
(28)

Tube side:

1

X

∂

∂X

(
X
∂C1

∂X

)
= (1 − X2)

∂C1

∂Z
(29)

Shell side bulk phase:

1

X

∂

∂X

(
X
∂C3b

∂X

)
= α

(
∂C3s

∂X

)
Y=1

(30)

Shell side solid phase:

1

Y 2

∂

∂Y

(
Y 2∂C3s

∂Y

)
=
(
Φ2C3sK̄m

C3s + K̄m

)
= f (C3s) (31)

f (C3s) = Φ2C3s (32)
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The boundary conditions in the dimensionless form are

(C1)Z=0 = 1 (33)(
∂C1

∂X

)
X=0

= 0 (34)

(
∂C1

∂X

)
X=1

= γ

(
∂C3b

∂X

)
X=1

(35)

(
∂C1

∂X

)
X=1

= H(kC3 − C1) (36)

(
∂C3b

∂X

)
X=β

= 0 (37)

C3s = C3b at Y = 1 (38)(
∂C3s

∂Y

)
Y=0

= 0 (39)

The dimensionless parameter “Φ” is the well-known Thiele
modulus which characterizes the ratio of the diffusion time
scale to the reaction time scale in the catalyst phase. The
parameter “α” characterizes the ratio of the radial diffusion
coefficient of the reactant in the bulk phase in the shell
side and the diffusion coefficient of the reactant within the
spherical catalyst pores. “H ” is the dimensionless membrane
parameter. For constant reactor configurations the parameter
“γ ” indicates the ratio of the radial diffusion coefficients
of the shell side and the tube side, respectively. “β” is a
geometric parameter.

3. Solution procedure

3.1. First order limit of the Michaelis–Menten kinetics

For the first order limit the kinetic expression becomes
linear and analytical solution is possible. The solution pro-
cedure is similar to the one adopted by Kim and Cooney
[3] and Jayaraman [8] for a reactor configuration similar to
the present study. Thus the shell side solid phase equation
(Eq. (31)) temperature can be integrated with Eqs. (38) and
(39) to obtain

C3s = C3b
sinh(ΦY)

Y sinh(Φ)
(40)

(
∂C3s

∂Y

)
Y=1

= C3s

(
Φ

tanh(Φ)
− 1

)
(41)

Defining,

Φ2
m = α

(
Φ

tanh(Φ)
− 1

)
(42)

The parameterΦm is a modified modulus, which incorpo-
rates information about the intra-particle diffusion–reaction
interaction as well as the information about the ratio of
the diffusion times of the bulk shell side to that of the

intra-particle diffusion times. The shell side bulk liquid
phase equation (Eq. (30)) can be written as

1

X

∂

∂X

(
X
∂C3b

∂X

)
= Φ2

mC3b (43)

C3b = a3(Z)F3 (44)

Eq. (43) can be integrated separately, subjecting to boundary
conditions given by Eqs. (36) and (37) to yield

F3 = I0(ΦmX) + I1(Φmβ)
K0(ΦmX)

K1(Φmβ)
(45)

a3(Z) = HC1

HkF3 − γ (dF3/dX)

∣∣∣∣
X=1

(46)

Eq. (35) can be combined with Eqs. (44)–(46) to give

∂C1

∂X

∣∣∣∣
X=1

= −C1

σ
(47)

σ = 1

H
− k

γ

F3

(∂F3/∂X)

∣∣∣∣
X=1

(48)

The expression forσ can be written in terms of modified
Bessel function as

σ = 1

H
+ κ

γ

I0(Φm)K1(Φmβ) + I1(Φmβ)K1(Φm)

Φm[I1(Φmβ)K1β − I1(Φm)K1(Φmβ)]
(49)

The problem has now been reduced to solving the tube side
equation (Eq. (29)) subject to boundary condition equation
(33) and the modified boundary condition equation (47). The
solution of this problem in terms of hyper geometric series
is available in literature [1] and is given by

C1(X,Z) =
∞∑
n=1

A1n exp(−Λ2
1NZ)F1 (50)

where

F1 = exp(−Λ1N
1
2X

2)M(1
4(2 − Λ1N),1,Λ1NX

2) (51)

M(a, b, c) = 1 + a

b
c + a

b

a + b

(b + 1)2!
c2 + · · · (52)

The eigenvaluesΛ1N are solutions of(
σ

dF1

dX
+ F1

)
X=1

= 0 (53)

The eigen constants can be obtained from

A1N

=− 2

Λ1N

∂F1/∂X

−(∂2F1/∂X2)F1 + (∂F1/∂λ)(∂F1/∂X)

∣∣∣∣
X=1

,

n = 1,∞ (54)

Once the inner tube concentration profiles are obtained the
mixing cup concentration can be found out using

C̄(m) =
∫ 1

0 C(X,Z)(1 − X2)X dX∫ 1
0 (1 − X2)X dX

(55)
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which can be simplified to

C1(Z) =
∞∑

N=1

−4A1N

(
∂F1

∂X

)
X=1

exp(−Λ2
1NZ)

Λ1N
(56)

3.2. Rigorous Michaelis–Menten kinetics

For nonlinear reactions it is not possible to obtain ana-
lytical solutions. The shell side equations have to be solved
separately at each axial step using a shooting procedure
with Newton correction to obtain the effectiveness fac-
tor. From the effectiveness factor, which is a function of
wall concentration, a dimensionless expression for the flux
(∂C3/∂X)|X=1 can be obtained in terms of the nonlinear
reaction term:

∂C3b

∂X

∣∣∣∣
X=1

η(Z)αΦ2(β2 − 1)C1K̄m

45(K̄m + C1)

∣∣∣∣
X=1

= f (Cw) (57)

where

η(Z) = 4.5(∂C3b/∂X)(K̄m + C1)

αΦ2(β2 − 1)C1K̄m

∣∣∣∣
X=1

(58)

The above simplification decouples the shell side equations
whose functions (diffusion terms and reaction terms) now
appear in Eq. (57). The tube side equation (Eq. (29)) along
with the boundary conditions represented by Eqs. (33) and
(57) can be solved by using Strum–Lioiville approach and
Duhamel’s formula. Details of solution procedure for these
equations can be found in Rudisill and Levan [7] and Ja-
yaraman and Kulkarni [12]. The solution can be written as

C1(X,Z)=Cw(Z)−
∫

∂Cw(Z
′)

∂Z′ C∞(X,Z − Z′)dZ′ (59)

with

C∞(X,Z−Z′)=
∞∑
n=1

AnYn(X)exp(−Λ2
1N(Z − Z′)) (60)

whereC∞(X,Z−Z′) is the solution to the tube side equation
with the wall boundary condition represented by

C1 = 0 at X = 1

Differentiating Eq. (59), we can obtain

−
∫ Z

0

dCw(Z
′)

dZ′
∂C∞
∂Z′

∣∣∣∣
X=1

(X,Z − Z′)dZ′

= f (Cw, η(Z)) (61)

where the RHS of the equation is given by Eq. (57). The
above equation is a Volterra integral equation and can be
solved by discretizing Eq. (61) as follows:

−
m∑
j=1

Cwj − Cwj−1

-Z

∫ Z′

0

∂C∞
∂Z′

∣∣∣∣
X=1

(X,Z − Z′)dZ′

= f (Cw(m), Zm, η(Zm)) (62)

m∑
j=1

Cwj − Cwj−1

-Z

×
( ∞∑
n=1

Bn exp(Λ2
1NZm)(exp(Λ2

1NZj ) − exp(Λ2
1NZj−1))

)

= f (Cw(m), η(m)) (63)

where

Bn = −An(dYn/dX)|X=1

Λ2
1N

(64)

The above equation is a nonlinear algebraic equation and
can be solved by a standard Newton–Raphson routine.

The corresponding mixing cup concentration is given by

C̄(m) = Cw(m) −
m∑
j=1

(
Cwj − Cwj−1

-Z

)

×
( ∞∑
n=1

4Bn

Λ2
1N

exp(−Λ2
1NZm)

)
(exp(−Λ2

1NZj )

−exp(Zj−1)) (65)

4. Results and discussions

4.1. First order limit of the Michaelis–Menten kinetics

An inspection of the dimensionless equations (Eqs. (24)–
(33)) reveals that the concentration profiles and conversion
in the reactor depend essentially on three parameters, viz.,
σ,Φ andα. The parameterσ , can be thought of as an overall
mass transfer resistance, and its significance has been dis-
cussed in detail by Kim and Cooney [3] and Jayaraman [8].
For the reactor set-up proposed in this work, this parameter

Fig. 2. Variation of overall mass transfer resistance with Thiele modulus.
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represents the combined resistance of membrane, resistance
offered for diffusion in the bulk liquid phase in the reactor
annulus, and for diffusion and reaction in the pores of the
matrices. The value ofσ and hence the overall conversion
would depend upon the membrane characteristics and the
shell side parameters. To understand the significance of the

Fig. 3. (a)–(c) Mixing cup concentration profile in the reactor (first-order kinetics).

parametersΦ andα, it is necessary to recapitulate the phys-
ical processes occurring in the annulus of the reactor. The
transport of the reactant into the pores of matrices and subse-
quent reaction with catalysts/enzymes/cells localized there
depends on the diffusion coefficientD3s, the length scale of
the matrices and the reaction parameters. All these physical
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Fig. 3. (Continued).

parameters are contained in the dimensionless parameterΦ,
the Thiele modulus. This parameter characterizes the ratio
between the diffusion time and reaction time. High values
of this parameter indicate diffusion-controlled regime and
low values indicate reaction-controlled regime. The move-
ment of the substrate molecules in the bulk liquid phase in
the annulus is solely by radial diffusion. The substrate flux
in the bulk liquid phase is controlled by the magnitude of
the diffusion coefficientD3b and the annulus length scale.
Thus, the overall physical processes occurring in the reactor
shell side are more complex than in conventional reactors.
Due to the existence of porous matrices on the shell side,
there are two distinct length scales with widely differing
magnitudes. In the light of the above discussion, it is clear
that the extent of reaction depends on one additional pa-
rameterα apart from the Thiele modulus. This parameter
characterizes the ratio of diffusion coefficients and length
scales of the bulk phase in the shell and the solid phase
in the shell, respectively. Thus, the overall mass transfer
resistanceσ and the conversion depend significantly on
both the Thiele modulus andα. This dependence is de-
picted in Fig. 2. It can be seen from the figure that, with
an increase in Thiele modulus, the overall mass transfer
resistance decreases for any value ofα. This is due to the
fact that with an increase in the Thiele modulus the overall
reaction rate in the reactor increases thereby decreasing
the mass transfer resistance. Similarly, for fixed values of
the Thiele modulus, the overall mass transfer resistance
decreases and conversion increases with an increase in

α. Thus, the effect ofα is similar to that of the Thiele mod-
ulus. This is because of the overall flux in the shell side
increases with an increase in the Thiele modulusΦ.

Fig. 3 shows the mixing cup concentration profile as a
function of Thiele modulus for two different axial locations
in the reactor. For a given value ofα, with an increase in
the Thiele modulus (or vice versa), the flux of the substrate
increases and the mixing cup concentration decreases (and
hence conversion increases). The influence of the membrane
resistance on the overall performance can be gauged by suit-
ably varying the membrane parameters, “H ”, γ and b/a.
Similarly, the influence of changing the total amount of cat-
alytic material on reactor performance can be found out by
suitably varying the dimensionless parameterd/a.

Data can be collected from different experimental runs
with varying values of catalytic material, membrane thick-
ness, reactor length and diameter of tube side and shell side.
The simple mode proposed in the work can be used to ver-
ify the experimental results. This can help in elucidation of
different governing mechanisms and in obtaining a range of
optimum parameters.

4.2. Michaelis–Menten kinetics

For this nonlinear kinetic expression analytical solutions
are not possible. This is due to the fact that the flux of the
substrate/reactant to the shell side (Eq. (58)) contains a non-
linear term. Similar problems have already been solved by
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Fig. 4. (a) and (b) Mixing cup concentration profile in the reactor (M–M
kinetics).

Rudisill and Levan [7] and Jayaraman and Kulkarni [12],
while working with other reactor configurations. Using this
approach the tube wall concentration is obtained in terms of
a Volterra integral equation (Eq. (61)), which can be further
discretized to give a nonlinear algebraic equation (Eq. (63)).
Starting at the reactor inlet the effectiveness factor for the
inlet substrate concentration can be obtained by solving the
shell side equation. Using this value of the effectiveness
factor the tube side nonlinear algebraic equation (Eq. (61))
can be solved by Newton–Raphson method to yield the tube
wall concentration at the next axial location (this can be
decided by a suitable choice of the step size in the axial

direction). With this wall concentration the shell side equa-
tions are again solved to give the value of the effectiveness
factor at the next axial location. This value of the effective-
ness factor can now be used to update the tube wall concen-
tration in the axial direction. By repeatedly switching be-
tween the tube side equation and the shell side equation the
concentration profiles for the entire reactor length can be
obtained. A representative plot of the mixing cup concen-
tration profile for two values ofα are shown in Fig. 4a and
b. Such a procedure can be used to simulate the reactor for
different values of the Thiele modulus andα, the parameter
governing the ratio of the diffusion coefficients of the bulk
liquid phase and the matrix phase. The algorithm developed
in this work can be readily extended to other nonlinear ki-
netic expressions like substrate inhibition, product inhibition
and for multi-substrate reactions.

5. Conclusions

Theoretical analysis of a membrane reactor packed with
porous matrices, in which enzymes/cells have been local-
ized, has been presented with a view to simulate the per-
formance of the reactor. The results indicate that the overall
performance of the reactor depends on the diffusion time
scales and length scales of the bulk phase and the solid ma-
trix phase in the reactor shell. Analytical solutions are pos-
sible for the first order reaction occurring in the reactor shell
side, whereas, a formalism using Duhamel’s theorem has
been used to obtain solutions for Michaelis–Menten kinet-
ics. Such an approach can be extended to solve other kinetic
expressions. This novel reactor configuration can be advan-
tageously used for conducting a large variety of chemical
and biochemical reactions.
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